
 B r a i t e n b e r g V e h i c l e D e m o n s t r a t i n g P a g e 1 | 4
 a ‘ F e a r ’ o f S p h e r i c a l O b j e c t s

Braitenberg Vehicle Demonstrating
a ‘Fear’ of Spherical Objects

Jamie A. Lord1
1Lincoln School of Computer Science, University of Lincoln, UK

jlord@lincoln.ac.uk

Abstract— This paper presents a Braitenberg vehicle that
demonstrates a fear-like behaviour towards spherical objects
detected using a visible light camera. The solution utilises the
Microsoft Kinect’s ability to measure distances using infra-red
markers to calculate the ‘level’ of fear to demonstrate and the
speed of which to retreat from the identified sphere(s).
Additionally, a basic collision avoidance system was implemented
to enable the platform to organically find targets in it’s
surroundings by ensuring that it does not become trapped in one
location and remains hunting for spheres to avoid. Performance
of the system in the ROS (Robot Operating System) simulator
was promising but performance of the sphere-detection
subsystem was less accurate when deployed to real hardware.
The final system did however perform well considering a limited
amount of testing using real-world visual input data. In
conclusion, the final system was moderately capable of
determining spherical objects on real-world data and the
capability of the system to avoid objects was highly-successful
and could easily be enhanced to create a robust solution to
ensure continued operation of a robotic platform in a previously
unknown environment.

Keywords— braitenberg vehicle, robot operating system, fear,
spherical object

I. INTRODUCTION
Implementing a fear-like behaviour is a common

Braitenberg experiment; the original experiment [1] utilised
light as a simple input that could easily be controlled and
sensed using the technology available at the time. Now that
more advanced sensors are available it is possible to detect
complex structures using image capturing systems.

The ability to detect spherical objects within a field of view
and then react based on the orientation and distance has many
real-world applications; an example that would require this
behaviour is a robotic system that plays dodge ball. Such a
robot would need to identify and respond to visual input
within a small timeframe if it were to be capable of playing
the game. More serious applications could include
automatically tracking spherical features on a production line,
for example ensuring the location on bottle caps on a
conveyor belt – the mathematical representation of the
location of the sphere could be used to effect any form of
behaviour.

The hardware platform used for this experiment was the
TurtleBot 2 [2], this small platform includes a Microsoft
Kinect sensor and a low-energy personal computer that
provides enough processing power for real-time image
processing tasks whilst also running on battery power [3]. The

robot uses the Robot Operating System [4] to provide a
flexible framework, built on top of a typical Linux operating
system, that enables rapid development of software using
standardised libraries and feature-sets. ROS’s publisher-
subscriber model was used in this implementation to make the
sphere-finding subsystem output available to other software
components.

The system was developed primarily in the simulator and
was ultimately tested on real-world hardware. Due to resource
limitations, testing on physical hardware could not be
conducted until a late stage of development. This is likely to
have been a primary factor in the lack of performance of the
sphere-detection system in the real-world. The imperfections
in a live video stream from a real camera are impossible to
fully simulate; as such, the system’s ability to detect spheres
was typically too sensitive when deployed to the robot. This
could however be corrected with more development using the
physical robot or by incorporating a more realistic
environment in the simulator, this is further discussed in the
following sections.

II. RELATED WORK
The paper ‘Emotional Generation Model for Autonomous

Mobile Robot’ [5] outlines a method for computing emotions
and storing them in an emotion vector. Maeda focuses on
sadness, joy and anger; the vector defined stores a
combination of these values in a three-dimensional space,
enabling complex emotions to be defined.

Fig 1. Basic emotion vector

 B r a i t e n b e r g V e h i c l e D e m o n s t r a t i n g P a g e 2 | 4
 a ‘ F e a r ’ o f S p h e r i c a l O b j e c t s

Basic robots are used that include a light sensor that
provides a normalised input to the emotion generation system.
Using only a 3D vector, other emotions were determinable
including disgust, fear and love. The final results of the study
show that a variety of emotions are easily implementable,
even on a robot with very simple sensors and actuators.

Subsequently, the notion of emotional flexibility could be
applied to the solution developed here. The robot could
demonstrate a number of emotions toward spherical objects
rather than just fear. This idea could be explored further by
also incorporating other values such as the distance to the
sphere(s) as well as their number and size – this complex
behaviour could have a wide range of real-world applications.

Detecting circles in an image is a core component of this
research, enhancing the algorithms used could lead to superior
performance or more accurate results. The paper ‘Fast Circle
Detection using Gradient Pair Vectors’ [6] highlights both the
issues with classical implementations of Hough
transformations as well as how they can be rectified. The
proposed detection method uses a pair of gradient vectors to
determine the edge of the circle(s) compared to the
background portion of the image.

The Hough detection method is typically storage and
processing intensive this can have major disadvantages for
real-time applications such as this one. Their solution is noted
as having eighty times the performance of the CHT algorithm.
The magnitude of this performance improvement when
deployed to limited or embedded hardware would be of
particular interest considering the platform used for this
research.

A core function of this system utilises the depth data taken
using a Microsoft Kinect sensor array; improving the
characteristic of this data could vastly improve the overall
performance of the complete system. Peasley and Birchfield
[7] propose an algorithm to detect and avoid obstacles for
mobile robot platforms. The implementation demonstrates the
versatility of the Kinect sensor as well as some of its
limitations – “depth readings for specular surfaces and for
objects that are too close to the sensor” [7] proved difficult to
accurately measure.

The largest improvement the paper demonstrates over
ROS’s handling of the Kinect depth data is the ability to
provide readings beyond a single horizontal plane. This makes
determining the height of specific objects possible, something
can cannot be done with the current implementation.

III. METHODOLOGY
The system was designed to leverage ROS’s inherent

publisher-subscriber model to handle movement and visual
data-flows. The entire system has been implemented in a
single class due to the limited feature-set of the complete
system. A vision and depth callback method was used to
handle the input streams from the ROS subscribers.

Fig 1. outlines the basic structure of the class and includes
arrows denoting the directional flow of data passed between
methods.

Fig 1. Complete system method overview

Of note is the relationship between the depthCallback

method and the search and tracker methods. The depth data is
used to determine if an object is close enough to the robot that
avoiding action should be instigated. Some class-wide
variables are also included in the diagram to illustrate how
they are used across multiple methods to share common data.

The search method is passed a 1D depth array by the
appropriate callback method and and proceeds to determine
where in front of the robot the closest object(s) are. The
following pseudo code outlines the algorithm used.

Fig 2. Search method

The method analyses the entire array of depth information

to determine the index of the closest pixel. A Twist object is
then initialised to send the appropriate movement actions to. It
is then determined whether the pixel that is closest to the robot
is on the right or left, the robot is then turned in the opposite
direction to avoid collision. Although crude, this algorithm
has proved acceptable when running on a real TurtleBot and
only struggles when the robot gets into a tight corner with an
object on both the right and left. In this situation, the
algorithm could be enhanced by turning the robot without
moving forward until there is nothing directly in front of it.

Determining the location of a circle in the input image is
implemented using OpenCV’s HoughCircles method [8]. This
feature accepts an image – in this case a frame from the
robot’s camera when a new one becomes available – and

 B r a i t e n b e r g V e h i c l e D e m o n s t r a t i n g P a g e 3 | 4
 a ‘ F e a r ’ o f S p h e r i c a l O b j e c t s

returns an array containing the central coordinates and radii of
any circles detected depending on the specified parameters.
The parameters used in this solution include the minimum and
maximum radius of the returned circles – these were
arbitrarily set; a future enhancement of the system could be to
enable these settings to be set dynamically depending on the
characteristics of the image being processed.

If any number of circles are found, then the tracker method
is called; this uses the coordinates of the centre of the
identified circle to firstly rotate the robot so that the circle is in
the centre of the camera field of view and then moves the
robot backwards.

IV. EVALUATION
The solution was initially developed in the ROS simulator

to the point that a working solution was ready for deployment
to a physical TurtleBot. Moving the solution to a real robot
with imperfect inputs and motor movements proved to
demonstrate the difference between a simulated world and the
real thing. The camera inputs were comparatively noisy and
produced a larger number of false-positives than the simulator;
see Fig. 3. Real-world testing was conducted using a green,
circular object that was distinct in colour to the background.

Fig 3. Example of miss-classification of camera input

When testing the system, it became apparent that the

number of circles being detected from the feed was too high;
the number of false positives made movement of the robot
impossible. This highlights the potential issues when
developing a robotic system in a simulator without using real-
world data. However, it should be entirely possible to remedy
this issue by measuring the features of the circles across
multiple frames to stop circles being detected in a single
frame. This would however have the effect of slowing down
the response time of the robot, but this may be required to get
the system working with real-world data.

The robot’s ability to navigate around complex objects
however was successful – the TurtleBot was capable of
avoiding table legs easily.

There are numerous system parameters that could be
modified to enhance the overall system. For example,
changing the parameters used with the HoughCircles function
call could improve the performance of the circle detection

without implementing the proposed multi-frame analysis
function.

In the real world, the solution is prone to over-sensitivity
and thus fails to accurately identify the features of concern.
The object avoidance aspect of the system is however very
successful and with further enhancements could yield very
strong results.

The overall performance was strong – the TurtleBot
includes a powerful x86 computer that is easily capable of
processing the camera’s output in real-time without dropping
frames. The camera worked well in typical ‘office’ lighting
but may struggle in lower light situations. A potential
improvement to the system could leverage the Kinect’s ability
to generate an image using infrared light outputted by the
device itself. This would mean the robot could operate in
complete darkness, although it is still possible that objects
with certain light-absorbing properties could disrupt the
quality of the vision input.

V. CONCLUSION & FUTURE WORK
The final solution utilised the TurtleBot hardware well

although the performance of the sphere sensing subsystem
was less than desired in the real-world. However, the collision
avoidance system was very successful considering the simple
nature of the algorithm used and delivered results that where
unexpectedly strong. With only minor modifications, this
system could be made to be very robust for environments
where the lighting is strong and the surface is flat.

The circle detection function used could be enhanced to
increase accuracy on the robot; this could be achieved by
analysing and storing the circles from previous frames to
minimise errant identifications. If a circle wasn’t identified
within a sequence of frames, then it would be discarded; a
window of movement could also be set to further reduce false
identifications. Implementing this feature would simply
require storing a pre-determined set of circle data for each
frame in a buffer that is constantly overwritten when new
camera images become available from the ROS subscriber.

Enhancing the collision avoidance system could also
improve the overall performance of the robot. The robot
occasionally got trapped when entering a corner; identifying
this situation algorithmically would be simple and lead to a
rotation of the robot such that it is no longer facing into the
corner.

In conclusion, this implementation of a Braitenberg vehicle
using ROS on a TurtleBot has been successful in the simulator
with some components working well in the real-world. With
minor enhancements and more time developing for the real
robot, the solution could perform very well. Fixes to the
discovered issues were identified that could make a future
implementation robust and perform well using real-world data.

 B r a i t e n b e r g V e h i c l e D e m o n s t r a t i n g P a g e 4 | 4
 a ‘ F e a r ’ o f S p h e r i c a l O b j e c t s

REFERENCES
[1] V. Braitenberg. Vehicles: Experiments in Synthetic Psychology 1986.
[2] W. Garage. Turtlebot. Website: Http://turtlebot.com/last Visited pp.

11-25. 2011.
[3] B. Gerkey and K. Conley. Robot developer kits [ros topics]. Robotics

& Automation Magazine, IEEE 18(3), pp. 16-16. 2011.
[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.

Wheeler and A. Y. Ng. ROS: An open-source robot operating system.
Presented at ICRA Workshop on Open Source Software. 2009, .

[5] Y. MAEDA. Emotional generation model for autonomous mobile
robot. KANSEI Engineering International 1(1), pp. 59-66. 1999.

[6] A. A. Rad, K. Faez and N. Qaragozlou. Fast circle detection using
gradient pair vectors. Presented at Dicta. 2003, .

[7] B. Peasley and S. Birchfield. Real-time obstacle detection and
avoidance in the presence of specular surfaces using an active 3D
sensor. Presented at Robot Vision (WORV), 2013 IEEE Workshop on.
2013.

[8] Anonymous (). Hough Circle Transform — OpenCV 3.0.0-dev
documentation 2015.

