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Abstract— This paper presents a Braitenberg vehicle that 
demonstrates a fear-like behaviour towards spherical objects 
detected using a visible light camera. The solution utilises the 
Microsoft Kinect’s ability to measure distances using infra-red 
markers to calculate the ‘level’ of fear to demonstrate and the 
speed of which to retreat from the identified sphere(s). 
Additionally, a basic collision avoidance system was implemented 
to enable the platform to organically find targets in it’s 
surroundings by ensuring that it does not become trapped in one 
location and remains hunting for spheres to avoid. Performance 
of the system in the ROS (Robot Operating System) simulator 
was promising but performance of the sphere-detection 
subsystem was less accurate when deployed to real hardware. 
The final system did however perform well considering a limited 
amount of testing using real-world visual input data. In 
conclusion, the final system was moderately capable of 
determining spherical objects on real-world data and the 
capability of the system to avoid objects was highly-successful 
and could easily be enhanced to create a robust solution to 
ensure continued operation of a robotic platform in a previously 
unknown environment. 
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I. INTRODUCTION 
Implementing a fear-like behaviour is a common 

Braitenberg experiment; the original experiment [1] utilised 
light as a simple input that could easily be controlled and 
sensed using the technology available at the time. Now that 
more advanced sensors are available it is possible to detect 
complex structures using image capturing systems. 

The ability to detect spherical objects within a field of view 
and then react based on the orientation and distance has many 
real-world applications; an example that would require this 
behaviour is a robotic system that plays dodge ball. Such a 
robot would need to identify and respond to visual input 
within a small timeframe if it were to be capable of playing 
the game. More serious applications could include 
automatically tracking spherical features on a production line, 
for example ensuring the location on bottle caps on a 
conveyor belt – the mathematical representation of the 
location of the sphere could be used to effect any form of 
behaviour. 

The hardware platform used for this experiment was the 
TurtleBot 2 [2], this small platform includes a Microsoft 
Kinect sensor and a low-energy personal computer that 
provides enough processing power for real-time image 
processing tasks whilst also running on battery power [3]. The 

robot uses the Robot Operating System [4] to provide a 
flexible framework, built on top of a typical Linux operating 
system, that enables rapid development of software using 
standardised libraries and feature-sets. ROS’s publisher-
subscriber model was used in this implementation to make the 
sphere-finding subsystem output available to other software 
components. 

The system was developed primarily in the simulator and 
was ultimately tested on real-world hardware. Due to resource 
limitations, testing on physical hardware could not be 
conducted until a late stage of development. This is likely to 
have been a primary factor in the lack of performance of the 
sphere-detection system in the real-world. The imperfections 
in a live video stream from a real camera are impossible to 
fully simulate; as such, the system’s ability to detect spheres 
was typically too sensitive when deployed to the robot. This 
could however be corrected with more development using the 
physical robot or by incorporating a more realistic 
environment in the simulator, this is further discussed in the 
following sections. 

II. RELATED WORK 
The paper ‘Emotional Generation Model for Autonomous 

Mobile Robot’ [5] outlines a method for computing emotions 
and storing them in an emotion vector. Maeda focuses on 
sadness, joy and anger; the vector defined stores a 
combination of these values in a three-dimensional space, 
enabling complex emotions to be defined. 

 

 
Fig 1. Basic emotion vector 
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Basic robots are used that include a light sensor that 
provides a normalised input to the emotion generation system. 
Using only a 3D vector, other emotions were determinable 
including disgust, fear and love. The final results of the study 
show that a variety of emotions are easily implementable, 
even on a robot with very simple sensors and actuators. 

Subsequently, the notion of emotional flexibility could be 
applied to the solution developed here. The robot could 
demonstrate a number of emotions toward spherical objects 
rather than just fear. This idea could be explored further by 
also incorporating other values such as the distance to the 
sphere(s) as well as their number and size – this complex 
behaviour could have a wide range of real-world applications. 

Detecting circles in an image is a core component of this 
research, enhancing the algorithms used could lead to superior 
performance or more accurate results. The paper ‘Fast Circle 
Detection using Gradient Pair Vectors’ [6] highlights both the 
issues with classical implementations of Hough 
transformations as well as how they can be rectified. The 
proposed detection method uses a pair of gradient vectors to 
determine the edge of the circle(s) compared to the 
background portion of the image. 

The Hough detection method is typically storage and 
processing intensive this can have major disadvantages for 
real-time applications such as this one. Their solution is noted 
as having eighty times the performance of the CHT algorithm. 
The magnitude of this performance improvement when 
deployed to limited or embedded hardware would be of 
particular interest considering the platform used for this 
research. 

A core function of this system utilises the depth data taken 
using a Microsoft Kinect sensor array; improving the 
characteristic of this data could vastly improve the overall 
performance of the complete system. Peasley and Birchfield 
[7] propose an algorithm to detect and avoid obstacles for 
mobile robot platforms. The implementation demonstrates the 
versatility of the Kinect sensor as well as some of its 
limitations – “depth readings for specular surfaces and for 
objects that are too close to the sensor” [7] proved difficult to 
accurately measure. 

The largest improvement the paper demonstrates over 
ROS’s handling of the Kinect depth data is the ability to 
provide readings beyond a single horizontal plane. This makes 
determining the height of specific objects possible, something 
can cannot be done with the current implementation. 

III. METHODOLOGY 
The system was designed to leverage ROS’s inherent 

publisher-subscriber model to handle movement and visual 
data-flows. The entire system has been implemented in a 
single class due to the limited feature-set of the complete 
system. A vision and depth callback method was used to 
handle the input streams from the ROS subscribers. 

Fig 1. outlines the basic structure of the class and includes 
arrows denoting the directional flow of data passed between 
methods. 

 
Fig 1. Complete system method overview 

 
Of note is the relationship between the depthCallback 

method and the search and tracker methods. The depth data is 
used to determine if an object is close enough to the robot that 
avoiding action should be instigated. Some class-wide 
variables are also included in the diagram to illustrate how 
they are used across multiple methods to share common data. 

The search method is passed a 1D depth array by the 
appropriate callback method and and proceeds to determine 
where in front of the robot the closest object(s) are. The 
following pseudo code outlines the algorithm used. 

 

 
Fig 2. Search method 

 
The method analyses the entire array of depth information 

to determine the index of the closest pixel. A Twist object is 
then initialised to send the appropriate movement actions to. It 
is then determined whether the pixel that is closest to the robot 
is on the right or left, the robot is then turned in the opposite 
direction to avoid collision. Although crude, this algorithm 
has proved acceptable when running on a real TurtleBot and 
only struggles when the robot gets into a tight corner with an 
object on both the right and left. In this situation, the 
algorithm could be enhanced by turning the robot without 
moving forward until there is nothing directly in front of it. 

Determining the location of a circle in the input image is 
implemented using OpenCV’s HoughCircles method [8]. This 
feature accepts an image – in this case a frame from the 
robot’s camera when a new one becomes available – and 
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returns an array containing the central coordinates and radii of 
any circles detected depending on the specified parameters. 
The parameters used in this solution include the minimum and 
maximum radius of the returned circles – these were 
arbitrarily set; a future enhancement of the system could be to 
enable these settings to be set dynamically depending on the 
characteristics of the image being processed. 

If any number of circles are found, then the tracker method 
is called; this uses the coordinates of the centre of the 
identified circle to firstly rotate the robot so that the circle is in 
the centre of the camera field of view and then moves the 
robot backwards. 

IV. EVALUATION 
The solution was initially developed in the ROS simulator 

to the point that a working solution was ready for deployment 
to a physical TurtleBot. Moving the solution to a real robot 
with imperfect inputs and motor movements proved to 
demonstrate the difference between a simulated world and the 
real thing. The camera inputs were comparatively noisy and 
produced a larger number of false-positives than the simulator; 
see Fig. 3. Real-world testing was conducted using a green, 
circular object that was distinct in colour to the background. 
 

 
Fig 3. Example of miss-classification of camera input 

 
When testing the system, it became apparent that the 

number of circles being detected from the feed was too high; 
the number of false positives made movement of the robot 
impossible. This highlights the potential issues when 
developing a robotic system in a simulator without using real-
world data. However, it should be entirely possible to remedy 
this issue by measuring the features of the circles across 
multiple frames to stop circles being detected in a single 
frame. This would however have the effect of slowing down 
the response time of the robot, but this may be required to get 
the system working with real-world data. 

The robot’s ability to navigate around complex objects 
however was successful – the TurtleBot was capable of 
avoiding table legs easily. 

There are numerous system parameters that could be 
modified to enhance the overall system. For example, 
changing the parameters used with the HoughCircles function 
call could improve the performance of the circle detection 

without implementing the proposed multi-frame analysis 
function. 

In the real world, the solution is prone to over-sensitivity 
and thus fails to accurately identify the features of concern. 
The object avoidance aspect of the system is however very 
successful and with further enhancements could yield very 
strong results. 

The overall performance was strong – the TurtleBot 
includes a powerful x86 computer that is easily capable of 
processing the camera’s output in real-time without dropping 
frames. The camera worked well in typical ‘office’ lighting 
but may struggle in lower light situations. A potential 
improvement to the system could leverage the Kinect’s ability 
to generate an image using infrared light outputted by the 
device itself. This would mean the robot could operate in 
complete darkness, although it is still possible that objects 
with certain light-absorbing properties could disrupt the 
quality of the vision input. 

V. CONCLUSION & FUTURE WORK 
The final solution utilised the TurtleBot hardware well 

although the performance of the sphere sensing subsystem 
was less than desired in the real-world. However, the collision 
avoidance system was very successful considering the simple 
nature of the algorithm used and delivered results that where 
unexpectedly strong. With only minor modifications, this 
system could be made to be very robust for environments 
where the lighting is strong and the surface is flat. 

The circle detection function used could be enhanced to 
increase accuracy on the robot; this could be achieved by 
analysing and storing the circles from previous frames to 
minimise errant identifications. If a circle wasn’t identified 
within a sequence of frames, then it would be discarded; a 
window of movement could also be set to further reduce false 
identifications. Implementing this feature would simply 
require storing a pre-determined set of circle data for each 
frame in a buffer that is constantly overwritten when new 
camera images become available from the ROS subscriber. 

Enhancing the collision avoidance system could also 
improve the overall performance of the robot. The robot 
occasionally got trapped when entering a corner; identifying 
this situation algorithmically would be simple and lead to a 
rotation of the robot such that it is no longer facing into the 
corner. 

In conclusion, this implementation of a Braitenberg vehicle 
using ROS on a TurtleBot has been successful in the simulator 
with some components working well in the real-world. With 
minor enhancements and more time developing for the real 
robot, the solution could perform very well. Fixes to the 
discovered issues were identified that could make a future 
implementation robust and perform well using real-world data. 
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